QUALITY BOOSTS.

Lubricant Additives

Synthetic base fluids & lubricant additives

LUBRICATION COMPONENTS AND SOLUTIONS: NEW FORMULATING POSSIBILITIES FROM ONE OF THE INDUSTRY'S BROADEST PORTFOLIOS

LANXESS is a leading global supplier of components to the lubricants industry. These components are essential to automotive,aviation,marine,mining,refrigeration,powergeneration, gas pumping and other industries.

Our products help our customers to comply with increasingly demanding government-mandated emissions and fuel-economy standards, protect braking systems from wear and tear, and extend the life of machinery operating at high temperatures or operating continuously.

With manufacturing sites in North and South America, Europe and Asia-Pacific, we are positioned to deliver lubricant components that significantly improve the performance of motor oils, transmission fluids, industrial and hydraulic oils, metalworking fluids and fuels, with exceptional customer care.

We bring you resources on a whole new scale. Our extensive product line enhances lubricant formulations and brings solutions to meet complex technical challenges. Our research capabilities, practical experience, global delivery, dedicated laboratory and on-site support staff make LANXESS the supplier of choice.

CONTENTS

- **04** Synthetic base fluids
- 07 Antioxidants
- 08 Detergents
- 09 Corrosion and rust inhibitors
- **12** Anti-wear and extreme pressure additives
- **14 Product selector guide**

SYNTHETIC BASE FLUIDS

Synthetic Base fluids can significantly enhance the performance of lubricant formulations by providing unique properties and characteristics that cannot be obtained from conventional mineral-based fluids. They are engineered to support improved performance in lubricant applications where extremes in low and high temperature and heavy loads may be experienced.

Synton[®] polyalphaolefin

Synton[®]PAOproducts are high viscosity, highly saturated, linear/ branched polymers that are designed to be used as the high viscosity synthetic oil or viscosity modifier component of a high performance lubricant or synthetic lubricant formulation. The highly saturated chemistry provides excellent response to anti-oxidants and can be an asset in a lubricant formulation for use under high temperature conditions. Blends made with Synton[®] PAO products can have a high Viscosity Index, with good low and high temperature performance, providing a lubricant that is usable under widely varying temperature conditions. The relatively low molecular weight of the Synton[®] PAO products, compared to the classic viscosity modifiers, makes these products stable to the significant shear stresses seen in many applications – especially gear oils. This shear stability behavior, both temporary and permanent, means a more consistent oil film thickness is provided to the working parts and can potentially help with wear protection.

Synton[®] high viscosity PAO

Synton[®] PAO 40 Synton[®] PAO 100

Attributes

- Excellent shear stability
- High VI providing improved wear protection and better fuel efficiency
- Good low temperature properties for improved flow
- Outstanding oxidation and thermal stability to support extended drain intervals
- Low volatility for lower oil consumption

- FDA 21 CFR 178.3570 / 178.3620 Compliant
- Kosher and Halal approved
- Proven industry standard with extensive formulary application experience
- Manufactured at two regional sites which provides high level of supply security

Property	Synton [®] PAO 40	Synton [®] PAO 100
Kinematic viscosity, cSt @ 100 °C	40	100
Kinematic viscosity, cSt @ 40 °C	399	1250
Viscosity index	152	168
Pour point, °C	-36	-24
Flash point, COC, °C	288	301
Fire point, COC, °C	325	327
Specific gravity (20/20 °C)	0.847	0.847

Reolube® phosphate ester base stocks

For general industrial application, Reolube[®] 225, a fully synthetic phosphate ester, is an excellent base stock for formulating ISO VG 46 HFDR fire resistant hydraulic fluids. Reolube[®] 225 provides excellent solubility and responds well to a range of additive packages. Where ISO VG 32 is required, Reolube[®] 140 synthetic phosphate ester is recommended. LANXESS also supplies trixylenyl phosphate and low toxicity tert-butylphenyl phosphate ester basestocks that are designed to be blended into fire-resistant hydraulic fluids for use in high risk applications such as nuclear power stations and steel mills.

Reolube[®] Isopropylphenyl phosphate ester Reolube[®] 140 Reolube[®] 225

Hatcol[®] synthetic esters

Hatcol[®] synthetic ester base stocks are used extensively in synthetic lubricant formulations to enhance high and low temperature performance, improve additive solubility and increase ubricity. They can be used alone for maximum high tempera-

ture performance or in combination with PAOs and Group III oils to improve additive solubility, stability, elastomer compatibility and cleanliness. Our broad synthetic ester line and expert technical support can fulfill virtually any need in lubrication.

Hatcol® monoesters Hatcol® diesters Hatcol® triesters Hatcol® polyol esters Central ester linkages Adipates, sebacates, phthalates & dimerates Trimellitates NPGs, TMPs, PEs, DiPEs, complexes & specialties

Market	Application	Attributes	Product	Viscosity at 40°C cSt	Benefits (vs. MO, VO & other synthetics)*
Refrigeration	HFC compatible	Miscibility with HFC	Hatcol [®] 3337	15	Reduced energy consumption,
	refrigeration	refrigerants,	Hatcol [®] 3505	22	polarity to provide miscibility with
	compressor oils	materials	Hatcol [®] 3506	32	HFC refrigerant gases, extended
		compatibility, load	Hatcol [®] 3501	46	life in hermetically sealed
		carrying ability,	Hatcol [®] 3504	68	applications.
		elastomeric seal	Hatcol [®] 3503	100	-
		compatibility, lower energy consumption.	Hatcol [®] 3507	220	-

* MO = Mineral Oil, VO = Vegetable Oil

HATCOL[®] SYNTHETIC ESTERS APPLICATIONS

Market	Application	Attributes	Product	Viscosity -	Benefits (vs. MO, VO
				cSt at 40 °C	& other synthetics)*
Automotive	Crank case oils	High stability in highly	Hatcol [®] 2938	19	Improved additive
		oxidative environment,	Hatcol [®] 2330	22	solubility and elastomeric
		high load bearing at	Hatcol [®] 2990	31	compatibility through the
		friction points, lower	Hatcol [®] 3169	32	modification of polarity
		deposits, elastomeric seal	Hatcol [®] 2907	40	of the base oil, improved
		compatibility, lower	Hatcol [®] 2362	72	lubricity and interaction
		energy consumption	Hatcol [®] 3391	80	of the base oil with metal
			Hatcol [®] 2372	125	surfaces
Automotive	2- stroke	High temperature stability,	Hatcol [®] 2999	80	Dramatic reduction is
	engine oils	lower valve deposits, lower	Hatcol [®] 2949	83	deposits and smoking, cut
	-	smoking, lower oil			oil consumption (100:1 gas:
		and energy consumption			oil ratio possible) lower cost
					of ownership (maintenance
					and downtime)
Industrial	Air	High stability in highly	Hatcol [®] 2938	19	Longer drain intervals,
	compressor oils	oxidative environment,	Hatcol [®] 2901	28	reduced deposits on recip
		longer drain intervals,	Hatcol [®] 5068	68	valves, lower maintenance
		lower deposits, lower	Hatcol [®] 2922	85	and downtime, educed
		maintenance and downtime,			energy consumption
		lower energy consumption			
Industrial	Oven	Performance in extreme	Hatcol [®] 2372	125	Dramatic reduction in
	chain oils	environments (up to	Hatcol [®] 5150	178	deposits, reduction in
		300 °C), low deposits on	Hatcol [®] 2941	213	fumes and odors, cut oil
		chain drives, minimal fumes	Hatcol [®] 3165	390	consumption by up to 80%,
		and odor, lower energy and			reduce energy consumption
		maintenance costs			by up to 50%, lower
					maintenance and
					downtime
Industrial	Gas turbines	Performance in extreme	Hatcol [®] 2954	24	Dramatic reduction in
		environments (up to 300 °C),	Hatcol [®] 2960	24	deposits, reduced energy
		no hot spots which cause			and oil consumption,
		hard deposits to form, lower			reduced mainte-
		energy and maintenance costs			nance and downtime
Biorenewable /	Esters having	Use of green raw materials	Hatcol [®] 2938	19	75% Biorenewable /
biodegradable	specific natural	and green end products			> 60% biodegradable
0	acid content	0			0
Biorenewable /	Esters having	Use of green raw materials	Hatcol [®] 5068	68	10% Biorenewable /
biodegradable	specific natural	and green end products			< 60% biodegradable
	acid content				
Biorenewable /	Esters having	Use of green raw materials	Hatcol [®] 2377	20	0% Biorenewable /
biodegradable	specific natural	and green end products		20	> 60% biodegradable
	acid content	<u>.</u>			

* MO = Mineral Oil, VO = Vegetable Oil

NAUGALUBE® AMINIC AND PHENOLIC ANTIOXIDANTS

Antioxidants

Antioxidants are vital components in the prevention of lubricant oxidative degradation due to exposure to oxygen, heat, light and metals during storage and service. Our Naugalube[®] antioxidant family is suitable for various types of lubricants, including mineral oil based products, synthetic base fluids and greases.

Naugalube[®] antioxidants meet the challenging requirements of today's industrial standards for stabilization of lubricants and fuels. Synergistic blends can be formulated to optimize cost/performance benefits. Depending on the specific products, antioxidants are available in liquid, powder or flake form. Naugalube[®] 438L with its extensive application experience serves as a proven industry standard.

Alkylated diphenylamine antioxidants

- Naugalube[®] 438L
- Naugalube[®] 438
- Naugalube[®] 750
- Naugalube[®] AMS

Phenyl-alpha-naphthylamine based antioxidants

- Naugalube[®] PANA
- Naugalube[®] APAN

Hindered Phenolic Antioxidant

■ Naugalube[®] 531

Product	Applications	Attributes
Naugalube [®] 438L	Automotive engine oils, Industrial lubricants and grease	 Efficient: high performance AO for mineral & synthetic base oils Non-sludging and non-corrosive Effective for deposit control Liquid for easy blending and handling LuSC listed (Ecolabel)
Naugalube [®] 438	Aviation turbine oils, gear oils, hydraulic fluids, compressor oils, and grease	 Efficient: high performance AO for mineral & synthetic base oils Non-dusting solid AO NSF HX1 approved
Naugalube [®] 531	Turbine oil, hydraulic oil, gear oil, gasoline engine oil, metalworking oils, industrial grease, natural and synthetic esters, polyglycols	 Liquid antioxidant for easy blending and handling High molecular weight providing lower volatility at elevated temperatures LuSC listed (Ecolabel) Polar molecule with a unique branched alkyl ester structure offering excellent solubility in mineral oil and non-conventional base stocks Effective at lower temperatures, allows for broader oxidation control over a wider temperature range when used in conjunction with other antioxidant chemistries such as ADPA Synergistic with aminic antioxidants providing improved deposit control and piston cleanliness
Naugalube® 750	Automotive engine oils, food grade lubricants, and industrial lubricants	 Efficient: high performance AO for mineral & synthetic base oils NSF HX1 approved Kosher and Halal Certified Non-sludging and non-corrosive Effective for deposit control Liquid for easy blending and handling LuSC listed (Ecolabel)
Naugalube® AMS	Marine diesel engine oils, ATF and industrial oils and grease	 Excellent high temperature performance Low volatility and high purity Efficient: high performance AO for mineral & synthetic base oils Solid AO
Naugalube [®] PANA	Aviation turbine oils, industrial lubricants and grease	 NSF HX1 approved Excellent high temperature performance Solid AO
Naugalube® APAN	Turbine oils and industrial lubricants	 Efficiency and cleanliness (non-sludging) Excellent high temperature performance Liquid for easy blending and handling

Naugalube® antioxidants application table

DETERGENTS

Detergents

Additives designed to clean the metal surfaces within a fired engine and prevent the build-up of deposits. The insoluble by-products of the combustion process are removed by the detergents in the lubricants.

Lobase[®] and Hybase[®] detergents for transport applications

LANXESS offers a wide range of products from neutral to 500 TBN overbased detergents. These find extensive use in marine, passenger car motor oil and heavy duty diesel applications. In addition to cleaning the metal surfaces within a fired engine, overbased detergents also help neutralize acidic combustion by-products to prevent corrosion within the engine.

Calcium sulfonate and magnesium sulfonate detergents

Property		Lob	ase®						Hybase®				
	C-45 02	C-4503	C-4506	C-4509	C-231	C-311	C-313	C-320	C-401	C-402	C-400 HS	C-500	M-401
Carbonate form	-	-	-	-	Crys- talline	Amor- phous							
Calcium, wt%	2.35	2.79	2.00	2.95	10.5	12.0	12.0	12.70	15.7	15.2	15.0	18.5	-
Ca Sulfonate, wt%	42.0	44.5	44.0	45	18.5	28.0	28.0	25	19.3	18.5	25.0	20.0	-
Magnesium, wt%	_	-	_	_	-	-	-	-	-	-	-	-	9.3
Mg Sulfonate, wt%	-	-	-	-	-	-	-	-	-	-	-	-	28.0
TBN, mg KOH/g	20	30	8	31	285	305	305	320	418	405	395	495	395
Viscosity @ 100 °C, cSt	45	55	70	70 60		75	75	100	70	75	90	200	150

CORROSION AND RUST INHIBITORS

Corrosion inhibitors

Additives that prevent chemical attack on a metal surface. This group of additives repels water and helps neutralize the acidic reaction by-products of corrosion formed at the lubricant surface. These products are typically used on a variety of metals.

Rust inhibitors

Calcium sulfonate and oxidized petrolatum additives specifically designed to prevent chemical attack on iron and steel surfaces. They displace water from the metal surface by depositing a water-resistant film and neutralize the acidic reaction by-products of corrosion formed at the metal surface. These products are typically used on rolled steel products.

Calcinate corrosion / rust inhibitors	Calcinate NC Calcinate C-300CS Calcinate C-300R	Calcinate OTS Calcinate OR Calcinate C-400CLR
Barium sulfonate corrosion inhibitors	Barinate B-70 Surchem 404 Surchem 404D	
Hybase [®] fire-side corrosion inhibitors	Hybase [®] M-11D Hybase [®] M-12D Hybase [®] M-13D Hybase [®] M-14D	

CALCINATE OVERBASED CALCIUM SULFONATE CORROSION INHIBITORS, ANTI-WEAR AND EXTREME PRESSURE ADDITIVES

Corrosion and rust inhibitors

Our complete line of Calcinate overbased calcium sulfonates are used for both corrosion inhibition and EP/ AW performance in industrial and metalworking lubricant applications. These products can be used on a variety of metals. They may find use in metal working fluids, industrial oils and grease. Enhanced corrosion inhibition can be found by using LANXESS' barium sulfonates. Overbased detergents can also be effectively used to prevent wear and provide EP performance to lubricants. Typically products containing amorphous calcium carbonate are used for applications where oil clarity is critical, while products containing the crystalline form of calcium carbonate are used when additional EP/AW performance is required.

Property	Method				Calcina	ate		
		NC	C300CS	C300R	OTS	OR	C-400CLR	C-400W
Carbonate form			Crystalline	Amor- phous	Amor- phous	Amorphous	Amorphous	Crystalline
Average micelle size, nm		0.5-10	40-80	10-30	10-30	10-30	10-30	100-200
Calcium, wt%	ASTM D4951	2.7	10.5	12.0	12.0	15.2	15.2	14.5
Ca sulfonate, wt%	ASTM D3712	44.5	18.5	28	28.3	18.5	18.5	17.6
TBN, mgKOH/g	ASTM D2896	30	285	305	305	405	405	385
Viscosity @ 100°C, cSt	ASTM D445	55	100	75	75	75	75	_
Viscosity @ 25 °C, cPs	_	_	-	-	_	-	-	40,000
Sp. gravity @ 15 °C	ASTM D4052	0.96	1.10	1.13	1.13	1.20	1.20	1.15
Color (dilute)	ASTM D1500	5	5	5	5	5	5	5
Free alkalinity, mgKOH/g		_	20	21	30	10	1	-
Copper strip corrosion	ASTM D130	1b	1b	1b	1b	1b	1b	1b
Rust	ASTM D665A	Pass	Pass	Pass	Pass	Pass	Pass	Pass
4-Ball Wear*	ASTM D4172	0.63	0.35	0.33	0.31	0.31	0.32	0.36
4-Ball EP*, weld	ASTM D2783	160	200	200	200	200	250	250
Pin and Vee- Block*, lb.	ASTM D3233A	977	2353	1315	1963	1618	1686	4500

*10% in 100 SUS napthenic oil

Magnesium sulfonates - heavy fuel additives: fire-side corrosion inhibitors

Fire-side corrosion inhibitors are additives that are designed to prevent corrosion from combustion products resulting from the burning of fuels containing sulfur, vandium and other heavy metals. These products are primarily used in heavy fuel-fired turbines for electrical power generation.

Property	Method	Hybase®												
		M-11D	M-12D	M-13D	M-14D									
Magnesium, wt%	ASTM D4951	11.2	12.2	13.2	14.2									
Mg Sulfonate, wt%	ASTM D3712	10.0	11.0	12.0	13.0									
TBN, mgKOH/g	ASTM D2896	505	550	595	640									
Viscosity @100°C, cSt	ASTM D445	15	25	50	60									
Sp. gravity @15°C	ASTM D4052	1.150	1.190	1.230	1.250									
Flash point, COC, °C	ASTM D92	100	100	100	100									
Color (dilute)	ASTM D1500	3.0	3.5	3.5	4.0									

Barium sulfonate - enhanced corrosion inhibitors (industrial specialty corrosion applications)

Property	Surchem 404	Surchem 404D	Barinate B-70
Barium, wt%	6.6	6.6	14.0
TBN, mgKOH/g	4.0	4.0	68
Viscosity @100°C, cSt	110	110	40
Sp. gravity @15°C	1.000	1.000	1.160
Color (dilute)	6.0	6.0	5.0
Water demulsibility		Pass	Pass
Copper strip corrosion	1b	1b	1b
Rust	Pass	Pass	Pass

ANTI-WEAR & EXTREME PRESSURE ADDITIVES

Anti-wear additives

Commonly used in more severe boundary lubricant applications to reduce wear in areas of high load. Typically, high quality engine oils contain anti-wear additives to protect the engine components in the valve train and gear box.

Extreme pressure additives

Used to prevent sliding surfaces from welding together at high local temperatures and pressures under the most severe conditions. Typically, metalworking fluids require extreme pressure additives to prevent excessive tool wear from scoring or galling.

Calcinate overbased calcium sulfonates corrosion inhibitors, anti-wear and extreme pressure additives

Our complete line of Calcinate overbased calcium sulfonates are used for both corrosion inhibition and EP/AW performance in industrial metalworking lubricant applications. These products can be used on a variety of metals. They may find use in metalworking fluids, industrial oils and grease. Overbased detergents can also be effectively used to prevent wear and provide EP performance to lubricants. Typically products containing amorphous calcium carbonate are used for applications where oil clarity is critical while crystalline calcium carbonate products are used when additional EP/AW performance is required. For more information please view the Calcinate table on the Corrosion and Rust Inhibitors section, page 10.

Key attributes

- Low sediment/excellent clarity crystalline sulfonates
- Compatible with most mineral base oils, white oils and synthetic base stocks
- Globally registered

Calcinate anti-wear / **Extreme pressure additives**

- Corrosion inhibition and acid scavenging properties
- Contains no chlorine, phosphorus or active sulfur

Calcinate C-300CS Calcinate C-300R Calcinate OTS

Calcinate OR Calcinate C-400CLR Calcinate C-400W

Attributes

Oil soluble

Non-corrosive

Seal compatible

Biodegradable

Naugalube® alkyl citrate esters for automotive applications

Naugalube[®] 810 and Naugalube[®] 812 are organic anti-wear additives specially developed for use in automotive engine oils to prolong engine life. Free from metals, sulfur and phosphorus, these additives assist in sustaining the integrity of an engine's catalytic converter. Naugalube[®] 812's molecular structure gives it an advantage for applications where operating temperatures may exceed 120°C.

Key Benefits

- Metal, phosphorus and sulfur free
- Synergistic with ZDDP
- No friction increase
- Anti-wear retention
- Liquid additive

Naugalube[®] Alkyl citrate esters

Naugalube[®] 810 Naugalube[®] 812

Durad® phosphate ester based anti-wear/extreme pressure additives

Phosphate Esters are widely known as effective, ashless, antiwear and mild extreme pressure additives for lubricants and functional fluids. The primary function of phosphate esters is to reduce friction and wear in applications where high loads cause boundary lubrication conditions. They also enhance solubility and stability in a wide range of lubricant base stocks. The Durad[®] product line offers a broad range of physical and performance properties tailored for specific applications.

		Ĩ	Phosphorous content wt%	Viscosity @40°C cSt
	Durad [®] Trialkyl phosphates	Durad [®] 40 Durad [®] 48	12.0 7.8	3.0 6.7
	Durad® Tricresyl phosphates	Durad [®] 125 Aviation	8.4	24
	Durad [®] Isopropylphenyl phosphates	Durad [®] 110 Durad [®] 150 Durad [®] 220 Durad [®] 300	8.3 8.0 7.6 7.1	24 28 38 66
	Durad® t-Butylphenyl phosphates	Durad [®] 110B Durad [®] 150B Durad [®] 220B	8.5 8.1 7.9	24 32 46
The second second	Durad [®] EP/AW and Copper corrosion inhibitors	Durad [®] 220B-EP Durad [®] 310M	8.85 7.3	45.2 55

Durad[®] 220B-EP

displays excellent anti-wear and extreme pressure performance in laboratory tests. It also shows high resistance to micropitting wear in the FZG test. As a multifunctional additive, Durad[®] 220B-EP has shown the additional benefits of excellent rust and corrosion protection. It also possesses good solubility and stability in a wide range of lubricant base stocks.

Benefits

- Excellent extreme pressure/anti-wear performance
- Excellent rust/corrosion protection
- Good oxidation stability
- Excellent FZG performance
- High resistance to micro-pitting wear
- Ash free

PRODUCT SELECTOR GUIDE

	Synton® polyalphaolefin	Synton [®] PAO 40	Synton [®] PAO 100	Reolube [®] phosphate esters	Reolube [®] 140	Reolube [®] 225	Hatcol® synthetic esters	Hatcol [®] monoesters	Hatcol [®] diesters	Hatcol [®] triesters	Hatcol [®] polyol Esters	Aminic antioxidants	Naugalube® 438L	Naugalube® 438	Naugalube [®] 531	Naugalube® 750	Naugalube [®] AMS	Naugalube [®] PANA	Naugalube [®] APAN	Anti-wear/extreme pressure	Calcinate NC	Calcinate C-300R	Calcinate OTS	Calcinate C-300CS	Calcinate OR	Calcinate C-400CLR	Calcinate C-400W	Durad [®] 40
Automotive	1																											
Engine																												
AIF		-	-						-						-			_	_									
Gear on																												-
Marine	1																											
Trunk piston engine oil													-			-			-									
System oil																												
Cylinder oil																												
Aviation																												
Turbine oil																												
Hydraulic fluids																												
Industrial/Powergen																												
Gear oil																												
Turbine oil																												
Hydraulic oil																												
Circulating oil																												
Compressor oil																												
Way oil																												
Grease																												
Metalworking																												
Metal removal																												
Metal forming																												
Rust preventatives																												
Fuels																												
Corrosion inhibitor																												
lubricity																												

■ primary recommendation ■ alternate recommendation *only suitable for use in diesel engines

ırad® 48	irad [®] 125 aviation	irad [®] 110	irad [®] 150	irad® 220	irad [®] 300	irad [®] 150B	irad [®] 220B	irad [®] 220B-EP	irad [®] 310M	ugalube [®] 810	ugalube [®] 812	base [®] detergents	base® C-4502	base® C-4503	base [®] C-4506	base® C-4509	∕base® detergents	/base [®] C-231	/base [®] C-311	/base [®] C-313	ˈbase [®] C-320	ˈbase [®] C-401	/base [®] C-402	/base [®] C-400HS	/base [®] C-500	∕base® M-401	base® fire-side rrosion inhibitors	'base [®] M-11D	/base [®] M-12D	/base [®] M-13D	ˈbase [®] M-14D	rinate corrosion inhibitors	rinate B-70	irchem 404/404D
đ	ð											Lo					H	H	E H	H	E H	E H	H	E H	E I	E H	HY	H	H	H	H	Bai	Ba	S
																			•															
									=																									
•																																		•
																																		•

LANXESS Deutschland GmbH **Business Unit Lubricant Additives** Kennedyplatz 1 50569 Cologne, Germany

Customers in the USA are kindly requested to refer to: LANXESS Corporation **Business Unit Lubricant Additives** 2 Armstrong Road Shelton, CT 06484, USA Tel: +1-203-573-2000

lubricant.additives@lanxess.com http://lab.lanxess.com

This information and our technical advice - whether verbal, in writing or by way of trials - is subject to change without notice and given in good faith but without warranty or guarantee, express or implied, and this also applies where proprietary rights of third parties are involved. Our advice does not release you from the obligation to verify the information currently provided - especially that contained in our safety data and technical information sheets - and to test our products as to their suitability for the intended processes and uses. The application, use and processing of our products and the products manufactured by you on the basis of our technical advice are beyond our

cessing of our produces ... control and, therefore, entirely your own responses, of our General Conditions of Sale and Delivery. Unless specified to the contrary, the values given have been established on standardized test specimens. The figures should be regarded as guide values only and not as binding minimum values. Kindly note that the results refer exclusively to the specimens tested. Under certain conditions, the test results established can be affected to a considerable extent by the processing conditions and manufacturing process.

All trademarks are registered in many countries in the world.